Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer

نویسندگان

  • Ying Jiang
  • Cristina Greco
  • Jeff Z. Y. Chen
  • Martin Kröger
چکیده

This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiflexible polymer solutions. I. Phase behavior and single-chain statistics

We study the thermodynamics and single-chain statistics of wormlike polymer solutions with Maier–Saupe-type interactions using self-consistent-field ~SCF! theory. The SCF equations are derived using a systematic field-theoretical approach which yields the SCF equations as the lowest order approximation, but permits fluctuation corrections to be incorporated. We solve the SCF equations using the...

متن کامل

Maier-Saupe theory in four dimensions.

Maier-Saupe theory is the canonical mean field description of thermotropic nematic liquid crystals. In this paper, we examine the predictions of the theory in four spatial dimensions. Representations of the order parameter tensor and the existence of new phases are discussed. The phase diagram, based on numerical solution of the self-consistent equations and Landau theory, is presented. Orienta...

متن کامل

Crystal-liquid crystal binary phase diagrams.

We propose a new theoretical scheme for the binary phase diagrams of crystal-liquid crystal mixtures by a combination of a phase field model of solidification, the Flory-Huggins theory for liquid-liquid mixing and Maier-Saupe-McMillan (FH-MSM) model for nematic and smectic liquid crystal orderings. The phase field theory describes the crystal phase transition of anisotropic organic crystal and/...

متن کامل

Multiple branches of ordered states of polymer ensembles with the Onsager excluded volume potential

We study the branches of equilibrium states of rigid polymer rods with the Onsager excluded volume potential in two-dimensional space. Since the probability density and the potential are related by the Boltzmann relation at equilibrium, we represent an equilibrium state using the Fourier coefficients of the Onsager potential. We derive a non-linear system for the Fourier coefficients of the equ...

متن کامل

Bulk Viscous Bianchi Type VI0 Cosmological Model in the Self-creation Theory of Gravitation and in the General Theory of Relativity

In the second self-creation theory of gravitation and in the general theory of relativity, Bianchi type VI0 cosmological model in the presence of viscous fluid is studied. An exact solution of the field equations is given by considering the cosmological model yields a constant decelerations parameter q=constant and the coefficients of the metric are taken as A(t)=[c1t+c<su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017